A Group Action on Losev-manin Cohomological Field Theories

نویسنده

  • SERGEY SHADRIN
چکیده

We discuss an analog of the Givental group action for the space of solutions of the commutativity equation. There are equivalent formulations in terms of cohomology classes on the Losev-Manin compactifications of genus 0 moduli spaces; in terms of linear algebra in the space of Laurent series; in terms of differential operators acting on Gromov-Witten potentials; and in terms of multi-component KP tau-functions. The last approach is equivalent to the Losev-Polyubin classification that was obtained via dressing transformations technique.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bcov Theory via Givental Group Action on Cohomological Fields Theories

In a previous paper, Losev, the author, and Shneiberg constructed a full descendant potential associated to an arbitrary cyclic Hodge dGBV algebra. This contruction extended the construction of Barannikov and Kontsevich of solution of the WDVV equation, based on the earlier paper of Bershadsky, Cecotti, Ooguri, and Vafa. In the present paper, we give an interpretation of this full descendant po...

متن کامل

Extention Cohomological Fields Theory and Noncommutative Frobenius Manifolds

INTRODUCTION The Cohomological Field Theory was propose by Kontsevich and Manin [5] for description of Gromov-Witten Classes. They prove that Cohomological Field Theory is equivalent to Formal Frobenius manifold. Formal Frobenius manifold is defined by a formal series F , satisfying to associative equations. In points of convergence the series F defines a Frobenius algebras. The set of these po...

متن کامل

Morphisms of Cohomological Field Theories

We introduce a notion of morphism of CohFT’s, on the basis of the analogy with A∞ morphisms, and discuss the relationship with morphisms of F -manifolds introduced by Manin and Hertling [5]. The structure maps of a morphism of CohFT’s have as input a cohomology class on the moduli space of scaled affine lines (complexified multiplihedron) studied in Ma’u-Woodward [9]. The main result is a compu...

متن کامل

Effective Curves on M 0,n from Group Actions

We study new effective curve classes on the moduli space of stable pointed rational curves given by the fixed loci of subgroups of the permutation group action. We compute their numerical classes and provide a strategy for writing them as effective linear combinations of F-curves, using Losev-Manin spaces and toric degeneration of curve classes.

متن کامل

Gromov–witten Classes, Quantum Cohomology, and Enumerative Geometry

The paper is devoted to the mathematical aspects of topological quantum field theory and its applications to enumerative problems of algebraic geometry. In particular, it contains an axiomatic treatment of Gromov–Witten classes, and a discussion of their properties for Fano varieties. Cohomological Field Theories are defined, and it is proved that tree level theories are determined by their cor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009